
17

S. Wang et al. (Eds.): ER Workshops 2004, LNCS 3289, pp. 17–30, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Modeling Geospatial Databases with Plug-Ins
for Visual Languages: A Pragmatic Approach

and the Impacts of 16 Years of Research
and Experimentations on Perceptory

Yvan Bédard, Suzie Larrivée, Marie-Josée Proulx, and Martin Nadeau

Centre for Research in Geomatics, Dept of Geomatics Sciences
Laval University, Quebec City, Canada

Tel.: 1-418-656-2131
Fax: 1-418-656-7411

{yvan.bedard,suzie.larrivee,marie-josee.proulx,
martin.nadeau}@scg.ulaval.ca

Abstract. Modeling geospatial databases for GIS applications has always posed
several challenges for system analysts, developers and their clients. Numerous
improvements to modeling formalisms have been proposed by the research
community over the last 15 years, most remaining within academia. This paper
presents generic extensions (called Plug-Ins for Visual Languages or PVL) to
facilitate spatial and temporal modeling of databases. For the first time, we ex-
plain its intrinsic relationship with an extended repository and how it has been
influenced by pragmatic lessons learned from real life projects. We describe
how we use PVLs with UML and how 16 years of fundamental research, di-
verse experimentations and feedbacks from users over the world shaped our ap-
proach. The final section presents Perceptory, a free repository-based UML+
PVL CASE developed to improve geospatial database modeling.

1 Introduction

Modeling geospatial databases for GIS applications has always posed several chal-
lenges for system analysts, system developers as well as for their clients whose in-
volvement into the development of such a project is not a familiar endeavor. To help
solving this problem, numerous software and database modeling techniques have been
proposed over the last 25 years. Over the last 8 years, UML has emerged as a standard
and has been widely adopted by industry and academia, including the geomatics
community. Amongst the characteristics of UML, there is a formal way to extend it
with stereotypes identified by a textual or pictogram notation [16]. Using pictograms
to model databases isn't new. In the field of cartography, it was first proposed in 1989
by Bedard and Paquette [7] to help E/R models depicting the geometry of carto-
graphic features. This first solution has been tested in several projects (National To-
pographic Database of Canada, Montmorency Forest, Urban database, etc.) and en-
hanced over time to become Modul-R [5, 6]. Modul-R was an E/R-based solution
supported by Orion, the first CASE including spatial pictograms and automatic code

18 Yvan Bédard et al.

generation for commercial GIS [6,8]. In 1996, after several experimentations with real
projects, an important shift was made to simplify the proposed solution while increas-
ing its expressive power. Practical projects clearly indicated the need to better support
unexpected complex geometric and temporal situations. On the other hand, Modul-R
expressiveness was continuously underused by both practitioners and students in spite
of previous training. Such common trend has psychological roots (ex. the concept of
satisficing) and stems from projects constraints such as allowable time, allowable cost
and client desire to see something running on his machine. In addition, many practi-
tioners hesitated to abandon their familiar formalism to adopt Modul-R underlying
MERISE E/R graphical notation. These practical experiences suggested realignment
and led to improved pictograms, better balance of information between the schema
and the dictionary, and formalism-independent PVLs (Plug-ins for Visual Lan-
guages). This was a major departure from other solutions which kept adding features
to their unique graphical notation (sometimes proprietary) and didn’t propose a formal
repository to store textual information hardly suitable for graphical representation.

A first test was made in 1996-97 while designing the road network OO model for
the government of British Columbia. In Summer 1997, the first version of the CASE
tool Perceptory was running; it implemented the PVLs as UML stereotypes. In paral-
lel, other researchers built slight variations of the pictograms, added extra ones or
developed similar concepts [27, 28, 14, 25, 26, 17, 21, 29]. Fig. 1 from Filho and
Lochpe [15] presents a historical overview of formalisms development.

Fig. 1. Historical overview of spatial formalisms (published in 15).

It is beyond the scope of this paper to compare the different solutions, however the
approach presented here differs from the others in two fundamental ways: a "plug-in
approach" and a "fully-integrated schema + repository approach". The rational for the
first difference is presented in [4]. The rational for the second differences is a reaction

Modeling Geospatial Databases with Plug-Ins for Visual Languages 19

to the leading tendency to perceive "modeling" solely as a schema exercise while in
fact it is not; a schema without clear and complete explanations of its content is mean-
ingless and its robustness cannot be validated. We have searched for the most effi-
cient balance between information best represented in the schema and information
best represented in textual form [6]. This has allowed us to avoid building too many
pictograms (as we tended in the early years, prior practical experiences). This has also
allowed us to define spatial and temporal extensions to traditional data dictionaries, a
work that is unique amongst the solutions proposed. The proposed balance between
graphical notation extensions and object dictionary extensions results from 16 years
of research and numerous lessons from database designers in several organizations
and projects such as the Canada Road Network, Canada Hydrographic Network, Na-
tional Topographic Database, Quebec Multi-Scale Topographic and Administrative
Data Warehouse, M3Cat Georeferenced Digital Libraries, Quebec Public Health, and
many more involving parcels, facilities, natural resources, archeology, olympic ath-
letes training, etc. Over 1000 undergraduate and graduate students have worked with
the developed solution as well as GIS professionals in continuing education courses in
Canada, France, Switzerland, Tunisia, Mexico and World Bank projects for Burkina-
Faso and Senegal. Perceptory is downloaded over 300 times per month and its web
site (http://sirs.scg.ulaval.ca/perceptory) is visited thousands of times yearly. Percep-
tory is used in over 40 countries. The feedback from this large base of users and pro-
jects contributes to the improvement of PVLs and repository extensions.

In the next section, we present the modeling approach we developed over the years.
Pragmatic lessons combined with studies in cognitive science and psychology have
led us to adopt a symbiotic approach that takes into account humans’ abilities and
limitations to create and read models and texts (analysts, developers, users), the con-
straints that apply to real-life projects (time, cost), the needed simplicity vs expressive
power of the formalism, the need to be compatible with international standards, and
the possibility to use other tools to support modeling than Perceptory.

2 Pragmatic Lessons

Experience has shown that database designers have difficulty to create a first model
that reflects "what" users need, i.e. the intended content of the database, without inter-
fering with implementation issues ("how" to provide it). Not separating properly con-
ceptual and implementation issues pollutes the analysis process with irrelevant details
and often hides the intentions of the clients. The emphasis of several UML books on
syntax and grammar lead to underestimating the importance of going incrementally
from technology-independent database analysis to technology-specific development.
In order to help analysts stay at the conceptual level and to facilitate communication
with his clients, we make schemas using only the essentials of objects’ semantics,
geometry and world time. Accordingly, we use only the required subset of the UML
object-class model and details are stored in the repository in natural language or codes
as needed (detailed semantics, geometric acquisition rules, existence and evolution
rules, minimum dimensions, resolution, extent, integrity constraints, derivation rules,
ISO data types, etc.). In fact, experience has led our team to adapt an agile approach
to database modeling (see [1], [9], [12], [18] and [22]) and to make conceptual sche-

20 Yvan Bédard et al.

mas with a UML-Lite approach as opposed to [23]. These essentials include class,
attribute without data type and visibility, operation without visibility, association with
multiplicities (written consistently with two explicit numbers for min and max, no *
nor single number) written next to its name to make reading easier, multiplicities for
attributes, association class, generalization, aggregation, package, ad hoc stereotype,
spatial properties of classes and attributes, temporal properties of classes and associa-
tions (existence) as well as temporal properties of attributes and geometries (evolu-
tion). Constraints on relationships are accepted as well as notes. On the other hand,
since hundreds of spatial relationships between classes are possible in a schema, they
are not included in the schema and are kept implicit (they are assumed to be derivable
using GIS spatial analysis applied to the geometry of the classes) unless a user desires
to put emphasis to some spatial associations for semantics reasons or integrity check-
ing (ex. House IsOn 1,1 Lot). Spatial integrity constraints involve semantics and ge-
ometry (ex. Road cannot overlay Dam if Road Class is type 2 and Dam is shorter than
200m) and are typically kept outside of the schema since they are detailed informa-
tion, they often vary according to attribute values and consequently may end up num-
bering over hundreds of times the number of classes. They are better managed in
specialized tools such as CSory (Constraints-in-Space repositORY) which uses both
the repository of Perceptory and the Erelate [13] and CRelate [11] ISO matrices to
allow users to define their constraints based on geometry and semantics (objects and
attributes). Doing so avoids polluting the schema and disturbing the focus of the
model from clients’ immediate objects of interest. Instead, an easily readable report is
automatically produced. In fact, organizations don’t create large models of spatial
integrity constraints since it is practically impossible to cover a significant part of all
cases, commercial software cannot check them automatically, and they rely on data
providers for quality assurance. At best, they write the most important ones textually
and CSory has been designed with this fact in mind. Such decision to explicitly ex-
clude spatial integrity constraints that are not sensitive to the client from the database
schema seems to be a unique approach among the above-mentioned solutions, but it
likely is the only one based on real experiences with large topographic databases
where strategies have to be defined to restrict constraints to a manageable number (ex.
400 out of 20000 possibilities for about 48 object classes [24].

Compatibility with international standards such as ISO/TC-211 and OGC is also
commonly required [19, 20]. However, ISO jargon doesn’t express all possible ge-
ometries (ex. alternate and facultative geometries) and they are not cognitively com-
patible with clients’ conceptual view who assumes a topologically consistent world
(ex. GMPoint vs TPNode, GMCurve vs TPEdge, GMSurface vs TPFace, Aggregate
vs Multi). So, conceptual modeling is more efficient with PVLs. They can be mapped
with standard ISO geometries automatically with Perceptory or with user assistance
[10]. Doing so allows for automatic generation of code, reports, XML files and so on
with ISO technical syntax and content (see lower left of Fig. 6). Similarly, there fre-
quently is a linguistic need to support a single schema and dictionary (as well as re-
ports) expressed in multiple languages (ex. French and English in Canada) in combi-
nation with a specific technical jargon (ex. French+OMG/UML, English+ISO; see
upper-right of Fig. 6).

Another reality is the necessity for some analysts to continue working with their
own formalism (sometimes, these are in-house variations of a known formalism) and

Modeling Geospatial Databases with Plug-Ins for Visual Languages 21

CASE tool they already have. This pragmatic requirement was behind the idea to
develop a plug-in solution that can be integrated into any object-oriented and entity-
relationship formalism, and to make the pictograms available in a special font
(downloadable from Perceptory web site) which can be integrated into any software.
PVLs can thus be installed and used in commercial CASE tools, word processing,
DBMS, GIS, in-house software, etc. Extending CASE tools repository allow them to
accept detailed information about the geometry of objects. We developed Perceptory
to have a research tool we can modify at will for experimentation, to encourage teach-
ing spatial database modeling by providing a free tool to academia worldwide and to
help industry seeking for a more efficient technology specifically geared towards
spatial databases. The next two sections present the PVL and Perceptory.

3 Using PVLs for Spatial Database Modeling

The PVL concept was introduced in 1999 by Bedard [4]. PVLs are simple but power-
ful sets of pictograms and grammar forming a graphical language used to depict any
possible geometry. In database modeling, they are used for spatio-temporal properties
of object classes, of attributes, of operations and of associations via association
classes (see [4, 10] for more details). They offer a high level of abstraction by hiding
the complexity inherent to the modeling of geometric and temporal primitives as well
as implementation issues specific to each commercial GIS product or universal server.
They encapsulate parts of the data structure dealing with geometric primitives, a tech-
nique called Sub-Model Substitution when introduced by Bedard and Paquette [7].
They are compatible with common practices to extend formalisms such as UML
stereotypes (ex. relational stereotypes [23], multidimensional stereotypes [30]). We
have developed two PVLs for 2D applications: spatial PVL and spatio-temporal PVL.
Their equivalent 3D spatial PVLs are also available. The next sections present the use
of PVLs in UML class diagrams for the modeling of 2D spatial databases, 2D multi-
representations databases, 2D temporal and spatio-temporal databases, and finally 3D
spatial databases.

3.1 Using PVL for 2D Spatial Database Modeling

This PVL was the first developed and it by far the most largely used as it suffices for
most applications. It is composed of only three spatial pictograms and three special
pictograms to keep the schema simple and to facilitate communication with custom-
ers. The geometric details are written in the repository. These pictograms are made of
shapes (0D, 1D, 2D) within a 2D square which represents the 2D dimension of the

system universe (). Simple point geometry pictogram can be used for object
classes like "Fire hydrant", simple linear geometry for object classes like "Road seg-
ment centerline" and simple surface geometry for object classes like "Park". Using no
pictogram indicates the objects of a class are not going to be represented on a map.
All forms of pictograms that represent the object geometry are presented in Table 1.

22 Yvan Bédard et al.

Table 1. Possibles PVL forms for 2D spatial database modeling of object geometry.

Grammar Notation Description and examples

Simple geometry

One pictogram with
implicit 1,1 default
multiplicity (not writ-
ten).

Ex.

Ex.

Ex.

Every instance is represented by one and only
one simple geometry.
Ex. A 'Fence' is represented by one and exactly
one 1D geometry.

Aggregate geometry (AND)

Simple aggregate has a
simple pictogram with
1,N multiplicity.

Ex. 1,N

Ex. 1,N

Each instance is represented by an aggregate of
shape of same dimension. Ex. An 'Orchard' is an
aggregate of points (not a polygon).

Complex aggregate has
different shapes in the
same pictogram where
shape order has no
incidence.

Ex.

Ex.

Ex.

Each instance is represented by an aggregate of
shape of different dimensions. Ex. 'Large rivers'
are composed of lines and polygons. An aggre-
gate of aggregates is an aggregate (i.e. no need
of 1,N multiplicity).

Alternate geometry(XOR)

Two or more picto-
grams on the same line.

Ex.

Ex.

Ex. 1,N 1,N

Ex. 1,N

Each instance is represented by a geometry or
another but not both (the exclusive OR). The
proposed geometries can be simple and/or ag-
gregates. Ex. 'Building' can be represented by a
point if it is smaller than a fixed value or by a
surface if it is larger.

Multiple geometries

Two or more picto-
grams on different lines

Ex.

 Ex. 1,N

Each instance is represented by each geometry
but usually only one is used at a time. Ex. A
'Town' may have two geometries, a surface
delimited by its boundary and a point represent-
ing downtown. All geometry variations can be
used within multiple geometries.

Complicated geometry

Exclamation mark
pictogram
Rarely used as it is
facultative

 When the analyst feels that although it is possi-
ble, expressing the geometry with previous pic-
tograms becomes too complicated. Description is
in the repository. Ex. Bus Network made of
complex aggregations of roads (multiple lines) +
bus stops (points or polygons) + parking lots
(single or multiple polygons).

Any possible geometry
Wildcard pictogram
Rarely needed

 All geometries are possible, without restriction.
Ex. Historical Feature as a point (ex. statue), line
(ex. historic street), polygon (ex. park), polygon
+ line (ex. historic place with adjacent streets),
set of polygons (ex. group of buildings), etc.

Temporarily undefined geometry

Question mark picto-
gram. Rarely used.

 The geometry is temporarily unknown. Will be
replaced by meaningful pictograms.

Modeling Geospatial Databases with Plug-Ins for Visual Languages 23

Table 1. (Continued).

Grammar Notation Description and examples

Facultative geometry

Add a minimum multi-
plicity of 0 and a maxi-
mum multiplicity after
the pictogram.

Ex. 0,N

Ex. 0,1

Ex. 0,1

Only certain instances have a geometry. For
example, all buildings are in the database, but
only public ones have a position and shape and
will appear on maps. All the above geometry
variations can be facultative.

Derived geometry
Italicize the pictogram
(to remind the slash
used in UML).

Ex.

Ex.

Ex.

Ex.

The geometry is obtained from the processing of
other geometries or attributes. Ex. Country poly-
gons can be derived from state polygons. All the
above geometry variations can be derived, each
pictogram independently from the other.

For object classes, we place the pictograms on the left side of their name. When

applied to attributes, pictograms indicate that the value of an attribute varies within
the geometry of an object (an attribute with different values in different places for a
single conceptual object). This avoids having to create at the conceptual level a new

object class which would be meaningless for the client. For example, using next to
the attribute "number of lanes" of the class "Road" (see Fig. 2) is cognitively com-
patible with the client perception of "number of lanes" as a characteristic of Road that
varies spatially within an occurrence. Implementation can either create sub-segments
or use GIS dynamic segmentation.

Fig. 2. Spatial schema showing 2D pictograms for object classes and attributes, two spatial
associations derived from object geometries, one derived geometry for an association class, one
spatially non-derivable association.

24 Yvan Bédard et al.

Concerning the modeling of spatial relationships, we include only spatial relation-
ships that are semantically significant or sensitive for the customer to avoid overload-
ing the diagram. In fact, spatial relationships of immediate interest to the user will
often be the ones implemented explicitly, typically being derived from GIS process-
ing and translated into foreign keys or tables during code generation. Such meaningful
spatial relationships are modeled as derived associations (see UML “/” syntax in
Fig. 2). Derivation details are explained in the repository.

Pictograms can also represent the result of a spatial process as for Intersection class
in Fig. 2 where the derived geometry of the association class is the result of the spatial
intersection association. Details of the processing are in the repository.

3.2 Using PVL for Multi-representations Database Modeling

The PVL already supports multiple geometries and is immediately usable for multi-
representations databases. In addition, it also allows expressing generalization proc-
esses to build such multiple representations. Generalization processes are expressed as
operations in OO models, i.e. operations on the geometry of an object class. Of the
four possible generalization results presented hereafter, the last three lead to storing
multiple representations:
• automatic on-the-fly generalization;
• automatic generalization storing the resulting geometry for performance reasons;
• semi-automatic generalization storing results to avoid repeating the operation;
• manual generalization and storing of the results.
One could add an additional way to create multiple representations: new acquisition.

Fig. 3. Example of generalization operation and multiple representations of an object class.

In the previous example taken from the Quebec Topographic Database, a lake has
an original polygonal geometry at a map scale of 20K and a derived alternate
point/polygonal geometry at the 100K scale. When resulting geometries (ex. 100K)
are stored in the database, we then add them in italic as multiple representations. Ex-
amples and details can be found in [3].

3.3 Using PVL for Temporal and Spatio-temporal Database Modeling

The spatio-temporal PVL is used to manage real world time (valid time, measured or
simulated) and to indicate the user want to access it on-line (sometimes called "long

Modeling Geospatial Databases with Plug-Ins for Visual Languages 25

transactions"), i.e. to build a temporal database. The spatio-temporal PVL is defined
by 0D or time instant () and 1D or time interval () pictograms which are used for
class existence, descriptive evolution and geometric evolution.

For a class existence, pictograms are located on the right side of its name. They il-
lustrate if the life of every occurrence is considered instantaneous or durable. For
example, can be used for classes having instantaneous existence like "Accident",
and can used for classes having durable life like "Building". For evolution, we use

 if attribute values or geometry are valid only for an instant and if they are valid
for longer periods. "Temperature" is an example of instant validity when new values
are obtained every 15 minutes and the temporal granularity of this field or of the data-
base also is 15 minutes. “Commercial value” is an example of attribute with durable
values. Selecting between or depends on the temporal granularity defined into
the repository for each class, attribute and geometry.

All the forms presented for 2D spatial pictograms can be applied to temporal pic-
tograms. For example, complex aggregated temporality is represented by , simple
aggregate by 1,N, "any possible temporality” by , complicated temporality by
and unknown temporality by . Alternate temporality is represented by many picto-
grams with or without multiplicity on the same line while they are on different
lines for multiple temporalities. No user interest into keeping trace of object existence
leads to use no temporal pictogram next to the name of the class. Similarly, no user
interest to keep trace of past/future attribute values and geometries lead to no tempo-
ral pictogram next to them.

The default multiplicity for class existence is 1,1 because objects have only one life
(if well defined). The evolution of an object being the aggregate of its states, its de-
fault multiplicity is 1,N since pictograms indicate a client's interest to keep several
states of the attribute or geometry it is applied to. Typically, most occurrences will
have time to evolve during their life (the N multiplicity), but some won't with regard
to a given attribute or geometry due to their short life or stability (the 1 multiplicity).
Fig.4 shows a Building having a durable existence (one and only one life), durable
states for its attribute “commercial value” and no need to keep track of past addresses.

Fig. 4. Example of existence, descriptive and geometric evolutions.

Geometric evolution of objects involves shape modifications and/or displacements.
A temporal pictogram is then placed at the right of the spatial pictogram (after the
multiplicity if it has one). In the case of an alternate geometry, each spatial pictogram
has its own temporal pictogram. Fig.4 illustrates the geometric evolution of the Built-
Up Area of the Canadian National Topographic Database which occurrences are a
point if smaller than 250 000m² or an area if greater. This area may evolve and the
point move or become an area if the surface becomes greater than 250 000 m². These
rules are indicated in specific fields of the repository.

26 Yvan Bédard et al.

3.4 PVL to Design 3D Spatial Database

Modeling 3D spatial databases is more complex than modeling 2D databases. Several
objects of a 2D universe can be translated for a 3D universe simply by deriving their
elevation from a DTM (Digital Terrain Model) or by extruding their height from an
attribute. One may also have true 3D objects. To represent these nuances adequately,
pictograms are made of shapes within a 3D cube instead of a 2D square in order to
represent the three dimensions of the system universe. Second, to obtain the shape of
the objects, we transpose each shape of the 2D spatial pictograms in a 3D space in a
way preserving the ground trace (2D view) and giving an elevation or not to them.
We obtain 6 pictograms as illustrated in Fig 5, where:

• a 0D object ()in a 2D universe becomes a 0D object () in a 3D universe if it is

an object without thickness or a vertical 1D object () if it has a height;

• a 1D object () in a 2D universe becomes a 1D object () in a 3D universe if it

is an object without thickness or a vertical 2D object () if it has a constant or
variable thickness;

• a 2D object () in a 2D universe becomes a 2D object ()in a 3D universe if it is
an object without thickness that embraces or not the digital terrain model or be-

comes a 3D object or volume () if it has a constant or variable thickness;

Fig. 5. Similarity between 2D and 3D pictograms to represent real world objects.

All variations described for 2D pictograms in Table 1 can be applied to 3D picto-

grams. For example, a complex aggregate , an alternate geometry , an

aggregation of volumes 1,N and a complicated geometry .

4 Perceptory

Perceptory is a free CASE tool developed as a MS-Visio stencil for spatial database
modeling (although it may also serve for non-spatial databases). It is based on UML
class diagram and the PVL identified earlier. The name Perceptory comes from per-
ception, referring to the process of phenomenon representation, and repository, for
knowledge documentation. It is supported by a rich web site [2]. This CASE tool has
a rich multi-language (actually French, English and Spanish) and multi-standard re-
pository (OMG-UML, ISO/TC 211 19115, ISO/TC 211 19110) where schema and
forms can switch on-the-fly between languages as needed once the user has translated

Modeling Geospatial Databases with Plug-Ins for Visual Languages 27

text fields. A same form can also be viewed in many languages simultaneously. Fig. 6
shows schemas in French and English synchronized thru the same repository. The
larger form in the lower left shows ISO-TC211 19110 terms in blue for object defini-
tion while the smaller one shows the geometric characteristics of a class.

Perceptory has a utility to generate automatically the database code skeleton for
commercial GIS and universal servers. SQL commands or database structures proper
to each product are generated as well as log files and mappings between conceptual
and implementation views. This process is user-assisted and allows the developer to
select optimization strategies.

There is a report generator to print user-selected parts of the repository according
to a user-defined content template or a predefined one (ex. standard ISO TC211
19110 content). Pictures or drawings that have been inserted into Perceptory reposi-
tory during the design of the database are included (ex. to print topographic data ac-
quisition specifications). The report can be produced in all the languages used in the
repository in MS-Word and XML formats. The following table shows how Perceptory
adheres to the philosophy we described earlier with regard to balancing information
load between the schema and the repository.

Fig. 6. Perceptory multistandard and multilanguage interfaces and schema viewing.

28 Yvan Bédard et al.

Table 2. Balancing the information in the schema and in the repository for the main elements.

... applied to... Info in Modeling elements ...

Pa
ck

ag
e

C
la

ss

A
ss

oc
ia

tio
n

A
tt

ri
bu

te

O
pe

ra
tio

n

Sp
at

ia
l p

ic
to

T
em

po
ra

l p
ic

to

D
om

ai
n

M
et

ad
at

a

M
od

el

R

ep
os

ito
ry

UML notation (shape/text) X 3 X 3 X1,3 X 3 X 3 X 2 X 3

Model information X X 4 X

Element name X X X X X X X X

Semantic definition X X X X X X X

Implementation name X 6 X 6 X 6 X 6 X 6 X 6
Derivation rule X X X X X X 5 X

Stereotype name X X X

Abstract class X X X

PVLs X X X X X X

Multiplicity X X X X X X

Minimal dimension X X X

Acquisition rule X X X

Reference system X X X

Coverage X X X

Data format X X X X

Formal language X X

Role name and constraint X X X

Association constraint X X X

Etc.
1 Topological associations are usually not modeled 2 Enumerated domains only
3 Must be created in the schema 4 Key elements only
5 Via UML slash (/) or italic pictogram 6 If entered by choice during analysis

5 Conclusion

In a field such as database design which involves people, communication skills and
technical knowledge, theoretical research cannot succeed without thorough experi-
ences. Over the years, such experiences has alerted us that going after the theoreti-
cally most complete and rigorous language has to be balanced with human capabili-
ties, tools functionalities and project constraints. Taking these considerations into
account leads to a more complete research, one buildings on their symbiosis to deliver
results in sync with their fundamental raison d'être: being used to improve spatial
database design. The proposed solution has evolved over time and resulted in unique
concepts: (1) PVLs made of pictograms that constitute a powerful yet simple lan-
guage of their own and which may be used for several purposes and in different tools;
(2) a global design balancing and testing both schema representations and textual
representations in a repository; (3) a clear separation of the tasks involved in concep-
tual modeling from the ones involved in defining spatial integrity constraints, while
keeping the two in sync. In particular, balancing the expressive power of PVL with

Modeling Geospatial Databases with Plug-Ins for Visual Languages 29

that of textual explanations in a repository to describe the thousands of potential geo-
metric and temporal characteristics combinations of an object is a challenge forever.
So is balancing the readability and usability of PVLs with conceptual fidelity, robust-
ness, completeness and, one must admit, some personal taste. All this research has
also been influenced by pragmatic lessons which, on the overall, have led us to adopt
a more agile approach to database design (in system development sense, see [1], [9],
[12], [18], [22]).

Future research will involve a more global approach, a repository-based approach
where Perceptory will become a UML front-end to enter and visualize database de-
sign components. Such expanded repository, called ISTory (Integrated Spatial and
Temporal repositORY), will be the heart of a family of tools sharing common con-
cepts: ontology engine, code generators, report generators, spatial integrity con-
straints, data cubes, catalogs, etc. ISTory metastructure will contain information to
facilitate semantic interoperability, data quality analysis, transactional and analytical
database development, language and standard translating, etc. The result of such en-
deavor, which builds on past and ongoing projects, will be made accessible as an
XML file and provide a unique, powerful solution in sync with today’s trends such as
the semantic web and interoperability.

Aknowledgements

The authors wish to acknowledge the financial support of Canada Natural Sciences
and Engineering Research Council, Laval University, and major testing partners such
as the Ministry of Natural Resources Canada and the Ministère des Ressources
Naturelles, de la Faune et des Parcs du Québec. We are thankful to the other project
partners, to the users who send us feedbacks and requests, and to the three anonymous
reviewers.

References

1. Ambler, S.: Agile Model-Driven Development with UML 2.0. Wiley & Sons, NY (2004)
2. Bédard, Y., Proulx, MJ.: Perceptory Web Site, http://sirs.scg.ulaval.ca/Perceptory/ (2004)
3. Bédard Y, Proulx MJ, Larrivée S, Bernier E: Modeling Multiple Representation into Spa-

tial Datawarehouses: A UML-based Approach, ISPRS WG IV/3, Ottawa, July 8-12 (2002).
4. Bédard, Y.: Visual Modelling of Spatial Database towards Spatial PVL and UML, Geo-

matica, 53(2), (1999) 169-185
5. Bédard, Y., Caron, C., Maamar, Z., Moulin, B., Vallière, D.: Adapting Data Model for the

Design of Spatio-Temporal Database. Comp. Env. and Urban Systems, 20(l) (1996) 19-41.
6. Bédard, Y., Pageau, J., Caron, C.: Spatial Data Modeling: The Modul-R Formalism and

CASE Technology. ISPRS Symposium, Washington, August 1-14 (1992)
7. Bédard, Y., Paquette F.: Extending entity/relationship formalism for spatial information

systems, AUTO-CARTO 9, April 2-7, Baltimore (1989) 818-827
8. Bédard, Y., Larrivée, S.: Développement des systèmes d’information à référence spatiale:

vers l’utilisation d’ateliers de génie logiciel. CISM Journal ACSGC, 46(4) (1992) 423-433
9. Boehm, B., Turner, R.: Balancing Agility & Discipline. Addison-Wesley, NY (2004)

304 p.

30 Yvan Bédard et al.

10. Brodeur, J., Bédard, Y., Proulx, MJ.: Modelling Geospatial Application Database using
UML-based Repositories Aligned with International Standards in Geomatics, ACMGIS,
November 10-11, Washington DC, (2000) 36-46

11. Clementini, E., Di Felice, P., Van Oosterom, P.: A small set of formal topological relation-
ship suitable for end users interaction. Third symposium on Large Spatial Database, No.
692, Singapore, Springer-Verlag, NY (1993) 277-295

12. Cockburn, A.:. Agile Software Development. Addison-Wesley, NY (2002) 278 p.
13. Egenhofer, M., Herring J.: Categorizing Binary Topological Relations Between Regions,

Lines, and Points in Geographic Databases, Tech. Report, University of Maine (1990) 28 p.
14. Filho, J.L., Iochpe, C.: Specifying analysis patterns for geographic databases on the basis

of a conceptual framework. ACMGIS, Vol. 7, Kansas City, USA. (1999) 7-13
15. Filho, J. L., Iochpe, C.: Um Estudo sobre Modelos Conceituais de Dados para Projeto de

Bancos de Dados Geográficos, Revista IP-Informática Pública, 1(2) (1999) 37-90
16. Fowler, M.: UML 2.0, CampusPress (2004) 165 p.
17. Hadzilacos T., Tryfona N.: An Extended Entity-Relationship Model for Geographic Appli-

cations. SIGMOD Record, 26 (3) (1997)
18. Highsmith J.: Agile Software Development Ecosystems. Addison-Wesley, (2002) 448 p.
19. ISO/TC211 19110, Geographic information: Methodology for feature cataloguing (2004)
20. ISO/TC211, 19115, Geographic information: Metadata (2003) 140 p.
21. Kosters, G, Pagel, B., Six, H.: GIS-Application Development with GeoOOA. IJGIS, 11(4)

(1997) 307-335
22. Larman, C.: Agile & Iterative Development. Addison-Wesley (2004) 342 p.
23. Naiburg EJ., Maksimchuk, RA.: UML for Database Design, Addison-Wesley (2001) 300 p.
24. Normand, P., Modélisation des contraintes d'intégrité spatiale : théorie et exemples d'appli-

cation, Ms. Degree, Dept. Geomatics Sciences, University Laval, 1999
25. Parent, C, Spaccapietra, S, Zimanyi, E., Donini, P.: Modeling Spatial Data in the MADS

Conceptual Model. Int. Symp. on Spatial Data Handling, Vancouver (1998) 138-150
26. Parent C, Spaccapietra, S., Zimanyi, E.: Spatio-Temporal Conceptual Models: Data Struc-

tures + Space + Time, 7th ACMGIS, GIS’99, Kansas City, (1999) 26-33
27. Shekhar, S., Vatsavai1, R.R., Chawla, S., Burk, T. E.: Spatial Pictogram Enhanced

Conceptual Data Models and Their Translation to Logical Data Models, ISD'99, Lecture
Notes in Computer Science, Vol 1737, Springer Verlag (1999) 77-104

28. Shekhar, S., Chawla, S.: Spatial Databases A Tour, Prentice Hall (2003) 262 p.
29. Tryfona, N. Price, R., Jensen, C.S. Conceptual Models for Spatio-temporal Applications.

Spatio-Temporal Databases: The CHOROCHRONOS Approach 2003, (2003) 79-116
30. Priebe, T., Pernul, G.: Metadaten-gestützer Data-Warehouse-Entwurf mit ADAPTed UML,

5th Int.Tagung Wirtschaftsinformatik (WI 2001), 19.-21. September, Germany (2001)

	Text8: Bédard, Y, S. Larrivée, M.J. Proulx & M. Nadeau, 2004, Modeling Geospatial Databases with Plug-Ins for Visual Languages: A Pragmatic Approach and the Impacts of 16 Years of Research and Experimentations on Perceptory, S. Wang et al. (Eds.): COMOGIS Workshops ER2004, LNCS 3289, pp. 17–30, 2004., Shanghai, China

